220 research outputs found

    Correct extrapolation of overlap distribution in spin glasses

    Full text link
    We study in d=3 dimensions the short range Ising spin glass with Jij=+/-1 couplings at T=0. We show that the overlap distribution is non-trivial in the limit of large system size.Comment: 6 pages, 3 figure

    The Immunity of Polymer-Microemulsion Networks

    Full text link
    The concept of network immunity, i.e., the robustness of the network connectivity after a random deletion of edges or vertices, has been investigated in biological or communication networks. We apply this concept to a self-assembling, physical network of microemulsion droplets connected by telechelic polymers, where more than one polymer can connect a pair of droplets. The gel phase of this system has higher immunity if it is more likely to survive (i.e., maintain a macroscopic, connected component) when some of the polymers are randomly degraded. We consider the distribution p(σ)p(\sigma) of the number of polymers between a pair of droplets, and show that gel immunity decreases as the variance of p(σ)p(\sigma) increases. Repulsive interactions between the polymers decrease the variance, while attractive interactions increase the variance, and may result in a bimodal p(σ)p(\sigma).Comment: Corrected typo

    Equilibrium valleys in spin glasses at low temperature

    Full text link
    We investigate the 3-dimensional Edwards-Anderson spin glass model at low temperature on simple cubic lattices of sizes up to L=12. Our findings show a strong continuity among T>0 physical features and those found previously at T=0, leading to a scenario with emerging mean field like characteristics that are enhanced in the large volume limit. For instance, the picture of space filling sponges seems to survive in the large volume limit at T>0, while entropic effects play a crucial role in determining the free-energy degeneracy of our finite volume states. All of our analysis is applied to equilibrium configurations obtained by a parallel tempering on 512 different disorder realizations. First, we consider the spatial properties of the sites where pairs of independent spin configurations differ and we introduce a modified spin overlap distribution which exhibits a non-trivial limit for large L. Second, after removing the Z_2 (+-1) symmetry, we cluster spin configurations into valleys. On average these valleys have free-energy differences of O(1), but a difference in the (extensive) internal energy that grows significantly with L; there is thus a large interplay between energy and entropy fluctuations. We also find that valleys typically differ by sponge-like space filling clusters, just as found previously for low-energy system-size excitations above the ground state.Comment: 10 pages, 8 figures, RevTeX format. Clarifications and additional reference

    Lack of Ultrametricity in the Low-Temperature phase of 3D Ising Spin Glasses

    Full text link
    We study the low-temperature spin-glass phases of the Sherrington-Kirkpatrick (SK) model and of the 3-dimensional short range Ising spin glass (3dISG). For the SK model, evidence for ultrametricity becomes clearer as the system size increases, while for the short-range case our results indicate the opposite, i.e. lack of ultrametricity. Our results are obtained by a recently proposed method that uses clustering to focus on the relevant parts of phase space and reduce finite size effects. Evidence that the mean field solution does not apply in detail to the 3dISG is also found by another method which does not rely on clustering

    Discrete energy landscapes and replica symmetry breaking at zero temperature

    Full text link
    The order parameter P(q) for disordered systems with degenerate ground-states is reconsidered. We propose that entropy fluctuations lead to a trivial P(q) at zero temperature as in the non-degenerate case, even if there are zero-energy large-scale excitations (complex energy landscape). Such a situation should arise in the 3-dimensional +-J Ising spin glass and in MAX-SAT. Also, we argue that if the energy landscape is complex with a finite number of ground-state families, then replica symmetry breaking reappears at positive temperature.Comment: 7 pages; clarifications on valley definition

    State Hierarchy Induced by Correlated Spin Domains in short range spin glasses

    Full text link
    We generate equilibrium configurations for the three and four dimensional Ising spin glass with Gaussian distributed couplings at temperatures well below the transition temperature T_c. These states are analyzed by a recently proposed method using clustering. The analysis reveals a hierarchical state space structure. At each level of the hierarchy states are labeled by the orientations of a set of correlated macroscopic spin domains. Our picture of the low temperature phase of short range spin glasses is that of a State Hierarchy Induced by Correlated Spin domains (SHICS). The complexity of the low temperature phase is manifest in the fact that the composition of such a spin domain (i.e. its constituent spins), as well as its identifying label, are defined and determined by the ``location'' in the state hierarchy at which it appears. Mapping out the phase space structure by means of the orientations assumed by these domains enhances our ability to investigate the overlap distribution, which we find to be non-trivial. Evidence is also presented that these states may have a non-ultrametric structure.Comment: 30 pages, 17 figure

    Discreteness and entropic fluctuations in GREM-like systems

    Full text link
    Within generalized random energy models, we study the effects of energy discreteness and of entropy extensivity in the low temperature phase. At zero temperature, discreteness of the energy induces replica symmetry breaking, in contrast to the continuous case where the ground state is unique. However, when the ground state energy has an extensive entropy, the distribution of overlaps P(q) instead tends towards a single delta function in the large volume limit. Considering now the whole frozen phase, we find that P(q) varies continuously with temperature, and that state-to-state fluctuations of entropy wash out the differences between the discrete and continuous energy models.Comment: 7 pages, 3 figure, 2 figures are added, the volume changes from 4 pages to 7 page

    Pores in Bilayer Membranes of Amphiphilic Molecules: Coarse-Grained Molecular Dynamics Simulations Compared with Simple Mesoscopic Models

    Full text link
    We investigate pores in fluid membranes by molecular dynamics simulations of an amphiphile-solvent mixture, using a molecular coarse-grained model. The amphiphilic membranes self-assemble into a lamellar stack of amphiphilic bilayers separated by solvent layers. We focus on the particular case of tension less membranes, in which pores spontaneously appear because of thermal fluctuations. Their spatial distribution is similar to that of a random set of repulsive hard discs. The size and shape distribution of individual pores can be described satisfactorily by a simple mesoscopic model, which accounts only for a pore independent core energy and a line tension penalty at the pore edges. In particular, the pores are not circular: their shapes are fractal and have the same characteristics as those of two dimensional ring polymers. Finally, we study the size-fluctuation dynamics of the pores, and compare the time evolution of their contour length to a random walk in a linear potential

    Evidence for the double degeneracy of the ground-state in the 3D ±J\pm J spin glass

    Full text link
    A bivariate version of the multicanonical Monte Carlo method and its application to the simulation of the three-dimensional ±J\pm J Ising spin glass are described. We found the autocorrelation time associated with this particular multicanonical method was approximately proportional to the system volume, which is a great improvement over previous methods applied to spin-glass simulations. The principal advantage of this version of the multicanonical method, however, was its ability to access information predictive of low-temperature behavior. At low temperatures we found results on the three-dimensional ±J\pm J Ising spin glass consistent with a double degeneracy of the ground-state: the order-parameter distribution function P(q)P(q) converged to two delta-function peaks and the Binder parameter approached unity as the system size was increased. With the same density of states used to compute these properties at low temperature, we found their behavior changing as the temperature is increased towards the spin glass transition temperature. Just below this temperature, the behavior is consistent with the standard mean-field picture that has an infinitely degenerate ground state. Using the concept of zero-energy droplets, we also discuss the structure of the ground-state degeneracy. The size distribution of the zero-energy droplets was found to produce the two delta-function peaks of P(q)P(q).Comment: 33 pages with 31 eps figures include

    酸化物ガラスの塩基度と XPS による O1s 化学シフトの相関に関する考察

    Get PDF
    O1s binding energy measured by X-ray photoelectron spectroscopy (XPS) is candidate as a new tool to determine a new scale of Lewis basicity of oxide ions in glass. Some mathematical expressions for the basicity or XPS chemical shift, such as charge parameter and optical basicity, were compared with the experimental O1s binding energy in binary alkali oxide glasses. The expressions so far in use needed some modification in parameters. A new empirical expression introduced in this paper gives a new concept and universal scale of basicity
    corecore